C#版Facefusion:让你的脸与世界融为一体!-02 获取人脸关键点

先看效果

获取关键点

说明

C#版Facefusion一共有如下5个步骤:

1、使用yoloface_8n.onnx进行人脸检测

2、使用2dfan4.onnx获取人脸关键点

3、使用arcface_w600k_r50.onnx获取人脸特征值

4、使用inswapper_128.onnx进行人脸交换

5、使用gfpgan_1.4.onnx进行人脸增强

本文分享使用2dfan4.onnx实现C#版Facefusion第二步:获取人脸关键点。

顺便再看一下C++、Python代码的实现方式,可以对比学习。

模型信息

Inputs ------------------------- name:input tensor:Float[1, 3, 256, 256] ---------------------------------------------------------------  Outputs ------------------------- name:landmarks_xyscore tensor:Float[1, 68, 3] name:heatmaps tensor:Float[1, 68, 64, 64] --------------------------------------------------------------- 

代码

调用代码

using Newtonsoft.Json; using OpenCvSharp; using OpenCvSharp.Extensions; using System; using System.Collections.Generic; using System.Drawing; using System.Windows.Forms;  namespace FaceFusionSharp {     public partial class Form2 : Form     {         public Form2()         {             InitializeComponent();         }          string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";          string source_path = "";         string target_path = "";          Face68Landmarks detect_68landmarks;          private void button2_Click(object sender, EventArgs e)         {             OpenFileDialog ofd = new OpenFileDialog();             ofd.Filter = fileFilter;             if (ofd.ShowDialog() != DialogResult.OK) return;              pictureBox1.Image = null;              source_path = ofd.FileName;             pictureBox1.Image = new Bitmap(source_path);         }          private void button3_Click(object sender, EventArgs e)         {             OpenFileDialog ofd = new OpenFileDialog();             ofd.Filter = fileFilter;             if (ofd.ShowDialog() != DialogResult.OK) return;              pictureBox2.Image = null;              target_path = ofd.FileName;             pictureBox2.Image = new Bitmap(target_path);         }          private void button1_Click(object sender, EventArgs e)         {             if (pictureBox1.Image == null || pictureBox2.Image == null)             {                 return;             }              button1.Enabled = false;             Application.DoEvents();              Mat source_img = Cv2.ImRead(source_path);              List<Bbox> boxes= new List<Bbox>();              string boxesStr = "[{\"xmin\":261.8998,\"ymin\":192.045776,\"xmax\":821.1629,\"ymax\":936.720032}]";              boxes = JsonConvert.DeserializeObject<List<Bbox>>(boxesStr);              int position = 0; //一张图片里可能有多个人脸,这里只考虑1个人脸的情况             List<Point2f> face68landmarks = detect_68landmarks.detect(source_img, boxes[position]);              //绘图             foreach (Point2f item in face68landmarks)             {                 Cv2.Circle(source_img, (int)item.X, (int)item.Y, 8, new Scalar(0, 255, 0), -1);             }             pictureBox1.Image = source_img.ToBitmap();              Mat target_img = Cv2.ImRead(target_path);             boxesStr = "[{\"xmin\":413.807,\"ymin\":1.377529,\"xmax\":894.659,\"ymax\":645.6737}]";             boxes = JsonConvert.DeserializeObject<List<Bbox>>(boxesStr);              position = 0; //一张图片里可能有多个人脸,这里只考虑1个人脸的情况             List<Point2f> target_landmark_5;             target_landmark_5 = detect_68landmarks.detect(target_img, boxes[position]);              //绘图             foreach (Point2f item in target_landmark_5)             {                 Cv2.Circle(target_img, (int)item.X, (int)item.Y, 8, new Scalar(0, 255, 0), -1);             }             pictureBox2.Image = target_img.ToBitmap();              button1.Enabled = true;          }          private void Form1_Load(object sender, EventArgs e)         {             detect_68landmarks = new Face68Landmarks("model/2dfan4.onnx");              target_path = "images/target.jpg";             source_path = "images/source.jpg";              pictureBox1.Image = new Bitmap(source_path);             pictureBox2.Image = new Bitmap(target_path);         }     } } 

Face68Landmarks.cs

using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Linq;  namespace FaceFusionSharp {     internal class Face68Landmarks     {         float[] input_image;         int input_height;         int input_width;         Mat inv_affine_matrix = new Mat();          SessionOptions options;         InferenceSession onnx_session;          public Face68Landmarks(string modelpath)         {             input_height = 256;             input_width = 256;              options = new SessionOptions();             options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;             options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行              // 创建推理模型类,读取本地模型文件             onnx_session = new InferenceSession(modelpath, options);          }          void preprocess(Mat srcimg, Bbox bounding_box)         {             float sub_max = Math.Max(bounding_box.xmax - bounding_box.xmin, bounding_box.ymax - bounding_box.ymin);             float scale = 195.0f / sub_max;             float[] translation = new float[] { (256.0f - (bounding_box.xmax + bounding_box.xmin) * scale) * 0.5f, (256.0f - (bounding_box.ymax + bounding_box.ymin) * scale) * 0.5f };             //python程序里的warp_face_by_translation函数////             Mat affine_matrix = new Mat(2, 3, MatType.CV_32FC1, new float[] { scale, 0.0f, translation[0], 0.0f, scale, translation[1] });             Mat crop_img = new Mat();             Cv2.WarpAffine(srcimg, crop_img, affine_matrix, new Size(256, 256));             //python程序里的warp_face_by_translation函数////             Cv2.InvertAffineTransform(affine_matrix, inv_affine_matrix);              Mat[] bgrChannels = Cv2.Split(crop_img);             for (int c = 0; c < 3; c++)             {                 bgrChannels[c].ConvertTo(bgrChannels[c], MatType.CV_32FC1, 1 / 255.0);             }              Cv2.Merge(bgrChannels, crop_img);              foreach (Mat channel in bgrChannels)             {                 channel.Dispose();             }              input_image = Common.ExtractMat(crop_img);             crop_img.Dispose();         }          internal List<Point2f> detect(Mat srcimg, Bbox bounding_box)         {             preprocess(srcimg, bounding_box);              Tensor<float> input_tensor = new DenseTensor<float>(input_image, new[] { 1, 3, input_height, input_width });             List<NamedOnnxValue> input_container = new List<NamedOnnxValue>             {                 NamedOnnxValue.CreateFromTensor("input", input_tensor)             };             var ort_outputs = onnx_session.Run(input_container).ToArray();              float[] pdata = ort_outputs[0].AsTensor<float>().ToArray(); //形状是(1, 68, 3), 每一行的长度是3,表示一个关键点坐标x,y和置信度             int num_points = 68;             List<Point2f> face_landmark_68 = new List<Point2f>();             for (int i = 0; i < num_points; i++)             {                 face_landmark_68.Add(new Point2f((float)(pdata[i * 3] / 64.0 * 256.0), (float)(pdata[i * 3 + 1] / 64.0 * 256.0)));             }              var face_landmark_68_Points = new Mat(face_landmark_68.Count, 1, MatType.CV_32FC2, face_landmark_68.ToArray());              Mat face68landmarks_Points = new Mat();             Cv2.Transform(face_landmark_68_Points, face68landmarks_Points, inv_affine_matrix);              Point2f[] face68landmarks;             face68landmarks_Points.GetArray<Point2f>(out face68landmarks);              //python程序里的convert_face_landmark_68_to_5函数////             Point2f[] face_landmark_5of68 = new Point2f[5];             float x = 0, y = 0;             for (int i = 36; i < 42; i++) // left_eye             {                 x += face68landmarks[i].X;                 y += face68landmarks[i].Y;             }             x /= 6;             y /= 6;             face_landmark_5of68[0] = new Point2f(x, y); // left_eye              x = 0;             y = 0;             for (int i = 42; i < 48; i++) // right_eye             {                 x += face68landmarks[i].X;                 y += face68landmarks[i].Y;             }             x /= 6;             y /= 6;             face_landmark_5of68[1] = new Point2f(x, y); // right_eye              face_landmark_5of68[2] = face68landmarks[30]; // nose             face_landmark_5of68[3] = face68landmarks[48]; // left_mouth_end             face_landmark_5of68[4] = face68landmarks[54]; // right_mouth_end             //python程序里的convert_face_landmark_68_to_5函数////             return face_landmark_5of68.ToList();         }     } } 

C++代码

我们顺便看一下C++代码face68landmarks的实现,方便对比学习。

face68landmarks.h

# ifndef DETECT_FACE68LANDMARKS # define DETECT_FACE68LANDMARKS #include <fstream> #include <sstream> #include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp> //#include <cuda_provider_factory.h>  ///如果使用cuda加速,需要取消注释 #include <onnxruntime_cxx_api.h> #include"utils.h"   class Face68Landmarks { public:  Face68Landmarks(std::string modelpath);  std::vector<cv::Point2f> detect(cv::Mat srcimg, const Bbox bounding_box, std::vector<cv::Point2f> &face_landmark_5of68); private:  void preprocess(cv::Mat img, const Bbox bounding_box);  std::vector<float> input_image;  int input_height;  int input_width;     cv::Mat inv_affine_matrix;   Ort::Env env = Ort::Env(ORT_LOGGING_LEVEL_ERROR, "68FaceLandMarks Detect");  Ort::Session *ort_session = nullptr;  Ort::SessionOptions sessionOptions = Ort::SessionOptions();  std::vector<char*> input_names;  std::vector<char*> output_names;  std::vector<std::vector<int64_t>> input_node_dims; // >=1 outputs  std::vector<std::vector<int64_t>> output_node_dims; // >=1 outputs  Ort::MemoryInfo memory_info_handler = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU); }; #endif 

face68landmarks.cpp

#include "face68landmarks.h"  using namespace cv; using namespace std; using namespace Ort;  Face68Landmarks::Face68Landmarks(string model_path) {     /// OrtStatus* status = OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0);   ///如果使用cuda加速,需要取消注释      sessionOptions.SetGraphOptimizationLevel(ORT_ENABLE_BASIC);     /// std::wstring widestr = std::wstring(model_path.begin(), model_path.end());  ////windows写法     /// ort_session = new Session(env, widestr.c_str(), sessionOptions); ////windows写法     ort_session = new Session(env, model_path.c_str(), sessionOptions); ////linux写法      size_t numInputNodes = ort_session->GetInputCount();     size_t numOutputNodes = ort_session->GetOutputCount();     AllocatorWithDefaultOptions allocator;     for (int i = 0; i < numInputNodes; i++)     {         input_names.push_back(ort_session->GetInputName(i, allocator)); /// 低版本onnxruntime的接口函数         ////AllocatedStringPtr input_name_Ptr = ort_session->GetInputNameAllocated(i, allocator);  /// 高版本onnxruntime的接口函数         ////input_names.push_back(input_name_Ptr.get()); /// 高版本onnxruntime的接口函数         Ort::TypeInfo input_type_info = ort_session->GetInputTypeInfo(i);         auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();         auto input_dims = input_tensor_info.GetShape();         input_node_dims.push_back(input_dims);     }     for (int i = 0; i < numOutputNodes; i++)     {         output_names.push_back(ort_session->GetOutputName(i, allocator)); /// 低版本onnxruntime的接口函数         ////AllocatedStringPtr output_name_Ptr= ort_session->GetInputNameAllocated(i, allocator);         ////output_names.push_back(output_name_Ptr.get()); /// 高版本onnxruntime的接口函数         Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i);         auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();         auto output_dims = output_tensor_info.GetShape();         output_node_dims.push_back(output_dims);     }      this->input_height = input_node_dims[0][2];     this->input_width = input_node_dims[0][3]; }  void Face68Landmarks::preprocess(Mat srcimg, const Bbox bounding_box) {     float sub_max = max(bounding_box.xmax - bounding_box.xmin, bounding_box.ymax - bounding_box.ymin);     const float scale = 195.f / sub_max;     const float translation[2] = {(256.f - (bounding_box.xmax + bounding_box.xmin) * scale) * 0.5f, (256.f - (bounding_box.ymax + bounding_box.ymin) * scale) * 0.5f};     ////python程序里的warp_face_by_translation函数////     Mat affine_matrix = (Mat_<float>(2, 3) << scale, 0.f, translation[0], 0.f, scale, translation[1]);     Mat crop_img;     warpAffine(srcimg, crop_img, affine_matrix, Size(256, 256));     ////python程序里的warp_face_by_translation函数////     cv::invertAffineTransform(affine_matrix, this->inv_affine_matrix);      vector<cv::Mat> bgrChannels(3);     split(crop_img, bgrChannels);     for (int c = 0; c < 3; c++)     {         bgrChannels[c].convertTo(bgrChannels[c], CV_32FC1, 1 / 255.0);     }      const int image_area = this->input_height * this->input_width;     this->input_image.resize(3 * image_area);     size_t single_chn_size = image_area * sizeof(float);     memcpy(this->input_image.data(), (float *)bgrChannels[0].data, single_chn_size);     memcpy(this->input_image.data() + image_area, (float *)bgrChannels[1].data, single_chn_size);     memcpy(this->input_image.data() + image_area * 2, (float *)bgrChannels[2].data, single_chn_size); }  vector<Point2f> Face68Landmarks::detect(Mat srcimg, const Bbox bounding_box, vector<Point2f> &face_landmark_5of68) {     this->preprocess(srcimg, bounding_box);      std::vector<int64_t> input_img_shape = {1, 3, this->input_height, this->input_width};     Value input_tensor_ = Value::CreateTensor<float>(memory_info_handler, this->input_image.data(), this->input_image.size(), input_img_shape.data(), input_img_shape.size());      Ort::RunOptions runOptions;     vector<Value> ort_outputs = this->ort_session->Run(runOptions, this->input_names.data(), &input_tensor_, 1, this->output_names.data(), output_names.size());      float *pdata = ort_outputs[0].GetTensorMutableData<float>(); /// 形状是(1, 68, 3), 每一行的长度是3,表示一个关键点坐标x,y和置信度     const int num_points = ort_outputs[0].GetTensorTypeAndShapeInfo().GetShape()[1];     vector<Point2f> face_landmark_68(num_points);     for (int i = 0; i < num_points; i++)     {         float x = pdata[i * 3] / 64.0 * 256.0;         float y = pdata[i * 3 + 1] / 64.0 * 256.0;         face_landmark_68[i] = Point2f(x, y);     }     vector<Point2f> face68landmarks;     cv::transform(face_landmark_68, face68landmarks, this->inv_affine_matrix);      ////python程序里的convert_face_landmark_68_to_5函数////     face_landmark_5of68.resize(5);     float x = 0, y = 0;     for (int i = 36; i < 42; i++) /// left_eye     {         x += face68landmarks[i].x;         y += face68landmarks[i].y;     }     x /= 6;     y /= 6;     face_landmark_5of68[0] = Point2f(x, y); /// left_eye      x = 0, y = 0;     for (int i = 42; i < 48; i++) /// right_eye     {         x += face68landmarks[i].x;         y += face68landmarks[i].y;     }     x /= 6;     y /= 6;     face_landmark_5of68[1] = Point2f(x, y); /// right_eye      face_landmark_5of68[2] = face68landmarks[30]; /// nose     face_landmark_5of68[3] = face68landmarks[48]; /// left_mouth_end     face_landmark_5of68[4] = face68landmarks[54]; /// right_mouth_end     ////python程序里的convert_face_landmark_68_to_5函数////     return face68landmarks; } 

Python代码

face_68landmarks.py

import cv2 import numpy as np import onnxruntime from utils import warp_face_by_translation, convert_face_landmark_68_to_5  class face_68_landmarks:     def __init__(self, modelpath):         # Initialize model         session_option = onnxruntime.SessionOptions()         session_option.log_severity_level = 3         # self.session = onnxruntime.InferenceSession(modelpath, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])         self.session = onnxruntime.InferenceSession(modelpath, sess_options=session_option)  ###opencv-dnn读取onnx失败         model_inputs = self.session.get_inputs()         self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]         self.input_shape = model_inputs[0].shape         self.input_height = int(self.input_shape[2])         self.input_width = int(self.input_shape[3])       def preprocess(self, srcimg, bounding_box):         '''         bounding_box里的数据格式是[xmin. ymin, xmax, ymax]         '''         scale = 195 / np.subtract(bounding_box[2:], bounding_box[:2]).max()         translation = (256 - np.add(bounding_box[2:], bounding_box[:2]) * scale) * 0.5         crop_img, affine_matrix = warp_face_by_translation(srcimg, translation, scale, (256, 256))          # crop_img = cv2.cvtColor(crop_img, cv2.COLOR_RGB2Lab)  ###可有可无         # if np.mean(crop_img[:, :, 0]) < 30:         #     crop_img[:, :, 0] = cv2.createCLAHE(clipLimit = 2).apply(crop_img[:, :, 0])         # crop_img = cv2.cvtColor(crop_img, cv2.COLOR_Lab2RGB)   ###可有可无                  crop_img = crop_img.transpose(2, 0, 1).astype(np.float32) / 255.0         crop_img = crop_img[np.newaxis, :, :, :]         return crop_img, affine_matrix      def detect(self, srcimg, bounding_box):         '''         如果直接crop+resize,最后返回的人脸关键点有偏差         '''         input_tensor, affine_matrix = self.preprocess(srcimg, bounding_box)          # Perform inference on the image         face_landmark_68 = self.session.run(None, {self.input_names[0]: input_tensor})[0]         face_landmark_68 = face_landmark_68[:, :, :2][0] / 64         face_landmark_68 = face_landmark_68.reshape(1, -1, 2) * 256         face_landmark_68 = cv2.transform(face_landmark_68, cv2.invertAffineTransform(affine_matrix))         face_landmark_68 = face_landmark_68.reshape(-1, 2)         face_landmark_5of68 = convert_face_landmark_68_to_5(face_landmark_68)         return face_landmark_68, face_landmark_5of68  if __name__ == '__main__':     imgpath = '5.jpg'     srcimg = cv2.imread('5.jpg')     bounding_box = np.array([487, 236, 784, 624])          # Initialize face_68landmarks detector     mynet = face_68_landmarks("weights/2dfan4.onnx")      face_landmark_68, face_landmark_5of68 = mynet.detect(srcimg, bounding_box)     # print(face_landmark_5of68)     # Draw detections     for i in range(face_landmark_68.shape[0]):         cv2.circle(srcimg, (int(face_landmark_68[i,0]), int(face_landmark_68[i,1])), 3, (0, 255, 0), thickness=-1)     cv2.imwrite('detect_face_68lanmarks.jpg', srcimg)     winName = 'Deep learning face_68landmarks detection in ONNXRuntime'     cv2.namedWindow(winName, 0)     cv2.imshow(winName, srcimg)     cv2.waitKey(0)     cv2.destroyAllWindows()  

其他

《C#版Facefusion:让你的脸与世界融为一体!》中的Demo程序已经在QQ群(758616458)中分享,需要的可以去QQ群文件中下载体验。

模型下载

https://docs.facefusion.io/introduction/license#models

版权声明:

作者: freeclashnode

链接: https://www.freeclashnode.com/news/article-3183.htm

来源: FreeClashNode

文章版权归作者所有,未经允许请勿转载。

免费节点实时更新

热门文章

最新文章

归档